CS356: Discussion #3

Floating Point Representation

USCUniversity of
Y Southern California

IEEE 754 Standard: 32-bit

Binary32 Format (float)

sigh exponent fraction

1 bit 8 bits 23 bits

e Exponent encodes values [-126, 127] as unsigned integers with bias

e Exponent of all O's reserved for:
o Zeros: 9x00000000 (0.0), 9x80000000 (-0.0)
o Denormalized values: (-1)%19" x 0.(fraction) x 2 27 (nonzero fraction)

e Exponent of all 1's reserved for:

o Infinity: @x7F800000 (00), OxFF 800000 (-00)

o NaN: with any nonzero fraction
Decimal value (Normalized): (-1)519" x 1.(fraction) x 2 exponent-127
e Decimal range: (7 significant decimal digits) x 10*38

Bowen Song
[sign (1 bit) | exponent (8 bits) | fraction (23 bits)]

Bowen Song
Denormals allow representation of numbers very close to 0. (very small number)

Bowen Song
Mantissa

Special Numbers (32-bit)

Description exp frac Lower 31 bits Decimal value
(8 bits) | (23 bits) (hex)

Zero 00...00 00...00 0Xx00000000 0.0

Smallest Pos Denormalized 00...00 00...01 0x00000001 « 223 x 2-126

Largest Denormalized 00...00 11...11 OXO07FFFFF (1.0-g) x 27126

Smallest Pos Normalized 00...01 00...00 Ox00800000 1.0 x 2-126

One 01..11 {00...00 ©x3F800000 1.0
Largest Normalized 11...10 11...11 OX7F7FFFFF (2.0-¢) x 2127
Infinity 11...11 EOO...OO Ox7F800000 Infinity

NaN 11...11 | Nonzero > @x7F800000 NaN

Bowen Song
Any 0x7F8xxxxx with nonzero fraction = NaN

Bowen Song
0x7F800000 → +∞
0xFF800000 → −∞

NaN, sign bit is ignored

|EEE 754 Standard: 64-bit

Binary64 Format (double)

sign exponent fraction

1 bit 11 bits 52 bits

e Exponent encodes values [-1022, 1023] as unsigned integers with bias

e Exponent of all 0’s reserved for:
o Zeros: 9x0000000000000000 (0.0), Ox80000000000000L0 (-0.0)
o Denormalized values: (-1)%9" x 0.(fraction) x 2 11923 (nonzero fraction)

e Exponent of all 1's reserved for:
o Infinity: ©x7FFO000000000000 (00), OxFFF0000000000000 (-00)
o NaN: any nonzero fraction

Decimal value (Normalized): (-1)519" x 1.(fraction) x 2 exponent-1023

e Decimal range: (= 16 significant decimal digits) x 10 *308

Other formats, same patterns

1 sign bit, k bits for exponent, m bits for fraction
Bias = 2k1-1

Normalized: (-1)%9" x 1.(fraction) x 2¢exponent - Bias
Denormalized: (-1)%'9" x 0.(fraction) x 21-Bias

To negate, just flip the sign bit (except for NaN)

Exercise: IEEE 754 to Decimal Conversion

What number is represented by the single-precision float

11000000101000....

Exercise: IEEE 754 to Decimal Conversion

What number is represented by the single-precision float

11000000101000....

Sign = -1

Fraction = 1.01
Biased-Exponent = 129
Exponent = 127

X = (1) *1.01 * 22
=-1*101T
= (-5)10

Exercise: Decimal to IEEE 754 Conversion

What will be the single precision representation of the decimal number:

85.625

Exercise: Decimal to IEEE 754 Conversion

What will be the single precision representation of the decimal number:

85.625

85.625=1010101.701
x =1.010101101 * 2°

Sign=0
Exponent =127 + 6 = 133 = (10000101),
Mantissa = (010101101 OOOO...)2

Answer =0 10000707 070 10717 0700 0000....
= 0x42AB4000

Bowen Song
85 / 2 = 42 remainder 1
42 / 2 = 21 remainder 0
21 / 2 = 10 remainder 1
10 / 2 = 5 remainder 0
5 / 2 = 2 remainder 1
2 / 2 = 1 remainder 0
1 / 2 = 0 remainder 1

Bowen Song
0.625 × 2 = 1.25 → 1
0.25 × 2 = 0.5 → 0
0.5 × 2 = 1.0 → 1

Bowen Song
Stored exponent = 6 (2^6) + 127 (Bias) = 133.
Binary of 133 = 10000101.

Bowen Song
We take the bits after the leading 1. → 010101101... to fill the 23 bits

Bowen Song
Where did 6 come from? -> moved 6 points up, which means 2^6

Exercise: Detect Denormalized Numbers

Write a function int denorm(unsigned int x) thatreturns 1if x is
denormalized, and 0 otherwise.

https://godbolt.org/z/h39M3rq57

Exercise: Detect Denormalized Numbers

Write a function int denorm(unsigned int x) thatreturns 1if x is
denormalized, and 0 otherwise.

Solution 1 (5 Operators)
int denorm(unsigned int x) {

return !((x >> 23) & OxFF) && (x & Ox007FFFFF);

Bowen Song
Explanation
1. (x >> 23) & 0xFF
- Shifts x right by 23 → isolates the exponent field (8 bits).
- & 0xFF masks it to exactly those 8 bits.
- If this equals 0, exponent is all zeros.
2. !((x >> 23) & 0xFF)
 - Returns true if exponent = 0.
3. (x & 0x007FFFFF)
- Masks out the bottom 23 bits → the fraction field.
- Nonzero means fraction ≠ 0.
4. Combine with &&
- True only if exponent = 0 AND fraction ≠ 0.
- Exactly the condition for denormalized numbers.

Exercise: Detect Denormalized Numbers

Write a function int denorm(unsigned int x) thatreturns 1if x is
denormalized, and 0 otherwise.

Solution 1 (5 Operators)
int denorm(unsigned int x) {
return !((x >> 23) & OxFF) && (x & Ox007FFFFF);

Solution 2 (4 Operators)
int denorm(unsigned int x) {
int t = x & OX7FFFFFFF;
if (t < Ox800000 && t > 0)
return 1;
else
return 0;

Bowen Song
0x00000001 … 0x007FFFFF = all denormals.

Rounding and Casting in C

The IEEE 754 standard defines four rounding modes:
e Round to nearest, ties to even: default roundingin C for float/double ops
e Round towards zero (truncation): used to cast float/double to int
e Round up (ceiling): go towards +o (gives an upper bound)
e Round down (floor): go towards - (gives a lower bound)

Example: 8-bit frac — 4-bit frac, Round to nearest, ties to even

10701001 — 1011
10700110 — 1010
10707000 — 1010
10111000 — 1100

Exercise: Casting

short s;
int 1i;

float f;
double d;

Do the following statements always hold?

(float) ((double) f

(double) ((float)

(int) ((double) i)
(int) ((float) i)
(short) ((float) s

d

)

)
)

n K-

l—lo

YES
NO

YES
NO
YES

Bowen Song
double can represent every float exactly
 (53-bit vs 24-bit precision respectively.).

Bowen Song
double has 53 bits of integer precision,
so all 32-bit ints are exact.
Float only holds 24, not 32.
short is 15 bits.

Floating point operations in C

Floating point operations
e Addition and subtraction are not associative
o Add small-magnitude numbers before large-magnitude ones

e Multiplication and division are not associative (nor distributive)
o Control magnitude with divisions (if possible)
(bigl * big2) / (big3 * big4) overflows on first multiplication
1/big3 * 1/big4 * bigl * big2 underflows on first multiplication
(bigl / big3) * (big2 / big4) is likely better

e Comparison should use fabs(x-y) < epsilon instead of x==y
e Instead for integers (last week):
o Addition of unsigned or signed (2's complement) integers is associative,
even in the case of overflow
o You can use x==y

Datalab: What to implement (2)

Floating-point Problems: 4-byte constants (6x12345678), loops (for, while),
conditionals (if), comparisons (x==y, x>y), operators - && ||,
but no macros (INT_MAX), no float types or operations.

The unsigned input and int output are the bit-level equivalent of 32-bit floats
e unsigned floatAbsVal(unsigned uf)
e int floatIsEqual(unsigned uf, unsigned ug)

e int floatPower2(int x)

Exercise: Floating-point Sign

Write a function int sign(unsigned int x) that returns the sign of x as 1/-1

int sign(unsigned int x) {

}

https://godbolt.org/z/jxG33rPYo

Exercise: Floating-point Sign

Write a function int sign(unsigned int x) that returns the sign of x as 1/-1

int sign(unsigned int x) {
return (x & 0x80000000) ? -1 : 1;

X: 10101010 01010101 10101010 01010101

OX80000000: 10000000 0OV VOV VYV

negative: 10000000 00000000 00OV 00V
positive: 00000000 0000000 00V 00V

https://godbolt.org/z/jxG33rPYo

Exercise: Floating-point Sign

Write a function int sign(unsigned int x) that returns the sign of x as 1/-1

int sign(unsigned int x) {
return ((int)x >> 31) | ox1;

X: 10101010 01010101 10101010 01010101
X >>31: 11111111 11111111 11111111 11111111

-1: 1111711171 11117171171 11111111 11111111
1: 00000000 000VVVVO VOO0 000001

https://godbolt.org/z/jxG33rPYo

Exercise: Extract Exponent

Write a function int exponent(unsigned int x) that returns the exponent
of x (as is, including the bias).

int exponent(unsigned int x) {

https://godbolt.org/z/an8sjPeK3

Exercise: Extract Exponent

Write a function int exponent(unsigned int x) that returns the exponent
of x (as is, including the bias).

int exponent(unsigned int x) {
return (x >> 23) & OxFF;

X: 00111111 10000000 ©VVLVVVOO VYLV
exponent

https://godbolt.org/z/an8sjPeK3

Exercise: Extract Fraction

Write a function int fraction(unsigned int x) returning the fraction of x,
including the implicit leading bit equal to 1 (ignore denormalized numbers).

int fraction(unsigned int x) {

https://godbolt.org/z/an8sjPeK3

Exercise: Extract Fraction

Write a function int fraction(unsigned int x) returning the fraction of x,
including the implicit leading bit equal to 1 (ignore denormalized numbers).

int fraction(unsigned int x) {
return (x & Ox@O7FFFFF) | 0x00800000;

X: 00111111 901101001 000000 000000
fraction (without leading bit)

11101001 00000000 00000000
fraction (with leading bit 1)

https://godbolt.org/z/an8sjPeK3

Exercise: Detect Floating-point Zero

Write a function int is_zero(unsigned int x) returning 1 if x is 0.0 or-0.0,
and 0 otherwise.

int is_zero(unsigned int x) {

}

https://godbolt.org/z/ajMMsb8o5

Exercise: Detect Floating-point Zero

Write a function int is_zero(unsigned int x) returning 1 if x is 0.0 or-0.0,
and 0 otherwise.

int is_zero(unsigned int x) {
return (x == Ox00000000 || x == Ox80000000) ?> 1 : ©O;

+0: 00000000 0VVVVYVY VVVYVVO 0BV
-0: 10000000 000V VVVVLVVY VYV

https://godbolt.org/z/ajMMsb8o5

Exercise: Detect Floating-point Zero

Write a function int is_zero(unsigned int x) returning 1 if x is 0.0 or-0.0,
and 0 otherwise.

int is_zero(unsigned int x) {
return !(x & OX7FFFFFFF) ;

+0: 00000000 0VVVVYVY VVVYVVO 0BV
-0: 10000000 000V VVVVLVVY VYV

https://godbolt.org/z/ajMMsb8o5

